skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamour, Julien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed.Here, we analyzedRdarkvariability and its associations withVcmaxand other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative.We found that leaf magnesium and calcium concentrations were more significant in explaining cross‐siteRdarkthan commonly used traits like LMA, N and P concentrations, but univariate trait–Rdarkrelationships were always weak (r2 ≤ 0.15) and forest‐specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait–Rdarkrelationships, accurately predicted cross‐siteRdark(r2 = 0.65) and pinpointed the factors contributing toRdarkvariability.Our findings reveal a few novel traits with greater cross‐site scalability regardingRdark, challenging the use of empirical trait–Rdarkrelationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimatingRdark, which could ultimately improve process modeling of terrestrial plant respiration. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Predicting tropical tree demography is a key challenge in understanding the future dynamics of tropical forests. Although demographic processes are known to be regulated by leaf trait diversity, only the effect of inter‐specific trait variation has been evaluated, and it remains unclear as to what degree the intra‐specific trait plasticity across light gradients (hereafter light plasticity) regulates tree demography, and how this will further shape long‐term community and ecosystem dynamics. By combining in situ trait measurements and forest census data with a terrestrial biosphere model, we evaluated the impact of observation‐constrained light plasticity on demography, forest structure, and biomass dynamics in a Panamanian tropical moist forest. Modeled leaf physiological traits vary across and within plant functional types (PFT), which represent the inter‐specific trait variation and the intra‐specific light plasticity, respectively. The simulation using three non‐plastic PFTs underestimated 20‐year average understory growth rates by 41%, leading to a biased forest size structure and leaf area profile, and a 44% underestimate in long‐term biomass. The simulation using three plastic PFTs generated accurate understory growth rates, resulting in a realistic forest structure and a smaller biomass underestimate of 15%. Expanding simulated trait diversity using 18 nonplastic PFTs similarly improved the prediction of demography and biomass. However, only the plasticity‐enabled model predicted realistic long‐term PFT composition and within‐canopy trait profiles. Our results highlight the distinct role of light plasticity in regulating forest dynamics that cannot be replaced by inter‐specific trait diversity. Accurately representing light plasticity is thus crucial for trait‐based prediction of tropical forest dynamics. 
    more » « less
  3. Summary Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P‐use strategies across diverse plant communities.We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL; nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests. Then, we developed trait‐based models and spectral models for leaf P fractions and compared their predictive abilities.We found that plants exhibiting conservative strategies increased the proportions of PNand PM, but decreased the proportions of Piand PL, thus enhancing photosynthetic P‐use efficiency, especially under P limitation. Spectral models outperformed trait‐based models in predicting cross‐site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74) or proportions (R2 = 0.43–0.70 vs 0.06–0.45).These findings enhance our understanding of leaf P‐allocation strategies and highlight reflectance spectroscopy as a promising alternative for characterizing large‐scale leaf P fractions and plant P‐use strategies, which could ultimately improve the physiological representation of the plant P cycle in land surface models. 
    more » « less
  4. null (Ed.)